
U"LASIIE 4DOF/G L2/5 ML

1

S llll ii m1111 11 w

MICROCOPY RESOLUTION TEST CHART

NAIONAL BUREAU OF STANDARDS-1963-A

-~-- - - I - -w-r

4.e -Y~-,IM

LO A Retrospective oil
rim Commnunicating Sequential Processes

4 Todd A Gross*
I Department of Computezr Science and Electrical Engineering

University of Nevada, Las Vegas

March 18, 1988

Report C'SR-88-05

Department of
Computer Science and
Electrical Engineering

DTIGSELECTE
I MAY 17988

ID

University of Nevada, Las Vegas
Las Vegas, Nevada 89154

DI Report CS-88-05

Appmpd fte pSciencea

" tricalmd Enginerin

A Retrospective on
Comnunicating Sequential Processes

Todd A Cross*
Department of Computer Science and Electrical Engineering

University of Nevada, Las Vegas

March 18, 1988

Report CSR-88-05

DTICS ELECTE
MAY 1 its8D

*Supported by the U. S. Army Research Offite under Grant DAAL03-87-G-0004

Dlatibutlo Uubiflmd

,2SIFIED MASTER COPY - FOR REPRODUCTION PURPOSES
... i"rrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

IUn e I gnq t if J t
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AR0 24960.11 -MA

ft lnAME OF PERFORMING ORGANIZATION - . OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION1 (If applicable)
Univ. of Nevada, Las Vegas j___Applicable U. S. Army Research Office

k ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Dept. of Computer Sc. & Elec. Engr. P. 0. Box 12211

4505 Maryland Parkway, Las Vegas, NV 89154 Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appkiCable)

U. S. Army Research Office DAALO3-87-G-O004

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
P. 0. Box 12211 PROGRAM PROJECT TASK 'WORK UNIT
Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (Include Security Clailification)

A Retrospective on Communicating Sequential Processes

12. PERSONAL AUTHOR(S) Todd A. Gross

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) GE COUNT

Technical FROM TO March 18, 1988 " 10
16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those
of the authr(j).and sh uld not be const u d as an fficial Deartment of the Army position,

17. COSATI CODES I.SUBJECT TERMS (Continue on reveie if necessay and identify by block number)

FIELD GROUP SUB-GROUP Distributed Processing, Computers, Software,

Communicating Sequential Processes (CSP),
I t!nrce~ q Programs

.9. ABSTRACT (Continue on revem if necesary and identify by block number)

In 1978, C. A. R. Hoare published a draft of a programming language called
Communicating Sequential Processes (CSP). Ten years later, we can see that this
paper had a profound impact on our perception of parallel computation. This
paper examines the evolution of CSP over the last 10 years, in order to understand
its effect on our current perceptions of parallel and distributed computation.

20. DSTRISUTIONIAVAILAilUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
IUNCASSWIEDNIiUMITED I3 SAME AS RiPT. C OTK USERS Unclassified

22a. NAME OF RESPONSIBLE INIMIDUAL 22b. TELEPHONE (Include Area Code) Z2c. OffICE SYMBOL

D FORM 1473, e4 MAR 63 APR *ditm moy Ib wsed gems exha ". SECURITY CLASSIFICATION OF THIS PAGE
All other edibmns are obsolete. NCLASSIFIED

A Retrospective on
Communicating Sequential Processes

Todd Gross

March 9, 1988

1 Introduction
We live in an age of distributed processing. Desktop workstations connected by
high-bandwidth networks to one or more central processors and memory stores
have become ubiquitous at universities and research-oriented companies. Per-
sonal computers connected by local networks are common in smaller companies
and colleges. Modern computers can have several, even thousands, of separate
processors. As software engineers, we want to be able to utilise the full power
of this technology-but at the same time, we want to avoid having to under-
stand the inner complexities. We want to be able to develop programs that run
on several processors simultaneously and interdependently, avoiding destructive
interactions yet allowing for all necessary and useful constructive interactions.

Since the early 60's, researchers have attempted to provide this power to us,
using such techniques as coroutines, critical sections, and semaphores. With the
invention of guarded commands [Dij751, we had the ability to create programs
that acted nondeterministically, yet were provably correct. The result of this
is that we now had a tool for harnassing the power of parallel processing in a
manner that would ensure our processes behaved as specifled.

So we could now, using guarded commands and one of several methods of
memory protection available (see JPS85), write parallel programs that worked.
But Hoare had the foresight to see that this wouldn't be sufficient for pro-
grams running on separate machines, because processes running on one machine
wouldn't have automatic access to information on other machines. So Hoere de-
vised a protocol for shuttling information between processes. That protocol, in
combination with Dijkstra's guarded commands, became CSP.

When Hoare wrote his now famous paper outlining CSP, he had two objec-
tives in mind: to create a spare but powerful method of devising and denoting
multiprocess programs, and to allow for the exchange of information between
separate machines in a useful and correct manner. In this paper, we will exam-
ine CSP as it evolved over the past 10 years and see whether these objectives

num me d um mu H lt -1

have been met. We'll also be examining the effect CSP and the research it has
spawned have had on software engineering.

2 The Paper that Started it All

In August of 1978, exactly 3 years after Dijkstra's paper on guarded commands
was published, Hoare's paper on Communicating Sequential Processes appeared
in the Communications of the ACM jHoa78]. The paper consisted mostly of a
BNF grammar for his proposed language and various applications of it. It is
worth summarizing each of these parts.

2.1 CSP Grammar

First, we summarize the grammar. A CSP program consists of one or more pro-
cesses, which are independently executed blocks of code. Each process consists
of a label, a declaration list (possibly empty), and a command list. In the CSP
process below, P :: is the label, integer i; is the declaration list, and i := 0;
is the command list:

P ::
integer i;
i := 0;

Figure 1: A simple CSP process

Labels are straightforward: a name followed by a double colon (::). A name
can be subscripted, if one wishes to define several similar processes, like P(1)
instead of P.

Declarations are much like Pascal declarations, the only major difference
being with structured variables. A structured variable consists of an optional
label and a list of variables. The label, if given, strongly types the variable, so
that

T(x,y) := (s,b)

is not allowed, even if x and a, and y and b, have the same types. A structure
consisting of a label and an empty variable list is called a signal, and is only
used in message passing.

Commands are the equivalent of stainents in conventional languages. There
are 6 basic command types: assignment, parallel, input, output, alternative, and
repetitive. Accession For

Assignment commands are exactly as in Pascal, but the variables can have a NTIS GRA&I
structural type, as in the above example. DTIC TAB 0

2 Jlstiloatioun__Una~
o

.Uoed
0

Dist ribt on/
By

Avallabl1.ty Codes
at ' Sel D.

4 Dit SPecial

E
awl'

Parallel commands consist of a list of processes, separated by double bars (I I),
and surrounded by brackets. This creates the set of independently executing
processes that make up a CSP program. A typical CSP program is just one
parallel command.

Input and output commands are the protocol Hoare devised to allow processes
to send information to each other. The process sendinj the information issues
an output command of the form:

process ! value

where process is the name of a CSP process and value is the value we're sending.
The process receiving the information issues an input command of the form:

process ? variable

where variable is the location the value is stored in. Note that this includes
structured variables.

In CSP, the corresponding input and output commands are executed to-
gether. Which means that if process A issues an output command to process B,
it will not be executed until process B issues the corresponding input command
from process A. Likewise, if B issued the input command first, it would have to
wait for the corresponding output command from process A. This is the protocol
Hoare devised to allow for correct passing of information between distributed
processes. There are several ramifications of using this protocol, which will be
discussed later.

Alternative and repetitive commands are the guarded commands we referred to
earlier. They function exactly as discussed in Dijkstra's paper, although Hoare
uses a slightly different notation: Where DUkstra used if.. . to demarcate
an alternative command, Hfoare uses brackets ([... 1), and where Dijkstra uses
do.. .od to demarcate a repetitive command, Hoare uses brackets prepended
by an asterisk (O[... 1).

2.2 CSP Examples

As one of Hoare's primary goals in writing this paper was to create a simple yet
powerful method for designing concurrent programs, he gave several examples
used by other researchers in showing the power of their method. For instance,
in his paper on coroutines, Conway gave the example of reading in a sequence of
cards and sending them to a line printer, substituting carets (-) in the output
for double asterisks (**) in the input. Hoare used a straightforward parallel
command. He also gave a solution to the dining philosophers problem originally
proposed by Dijkstra. In this way, he showed that his method could well be
used in situations where other methods of safeguarding memory were shown to
be effective.

3

In addition to these, Hoare gave sample programs that showed that simple
processes connected by message passing could work like ordinary subroutines,
recursive subroutines (although limited to a predefined level of recursion), and
as parallel abstract data types (which means functions can operate on variables
of the type concurrently). These suggest that the rather restrictive protocol
Hoare devised was powerful enough to perform everything we would require of
a concurrent system.

2.3 Implications of the Article

It is clear that Hoare was attempting to create a system that would do for con-
current programs what structured programming and Hoare's Axioms [Hoa69]
did for single-stream processing: provide a single structurally sound and logi-
cally complete system for generating code to meet desired output specifications.
However, we must remember that unlike other proposed methods, no actual
CSP system existed. Hoare's proposal was only a draft, a gedankenexpesiment.
No one knew for sure whether such a system could be built as proposed. Fur-
ther, there was no proof that even the abstract method worked as expected. So
even if such a system were built, we could not be sure it did what we expected
it would.

The paper then, in its attempt to provide a simple and elegant method
for multiprogramming as well as multiprocessing, left two important questions
unanswered: Can we implement it? and Does it do what we think it does?
These are the subjects of the next two sections respectively.

3 Can We Implement CSP?

It is perhaps to be expected that a language designed on paper would undergo
changes before reaching its final implemented state. Such is indeed the case
with (CSP: there are several implemented languages that are based on CSP, yet
diverge from the original draft. For instance, it should be expected that no
one implemented structured variables as Hoare devised them-he himself failed

to specify how one declares such variables, they are syntactic sugar and not
actually necessary, but most importantly, it is unwise to force a process on an
unknown machine to provide a correct abstract type name. We can dismiss this
feature as nonessential to the inherent structure of CSP.

It would, however, be fair to say that all present implementations of CSP
differ from the original version in one manner that is fundamentally different
from the original version. In the original paper, Hoare decided that input and
output commands would be process orivntcd. Input commands name the process
they receive data from, and output commands name the process they send data
to. He foresaw the possibility of making commusaication port oriented, but
saw it as "semantically equivalent to the present proposal, provided that each

4

port is connected to exactly one other port in another process" ([Hoa78], page
675). But Silberschats showed that we could look at ports frot a broader
perspective ISilell. To him, a port was a location where any process could
"send" or "receive" messages. This is more practical to implement than process
oriented messaging, because specifying the process instead of a port forces the
compiler to generate the necessary ports. Thus, all three CSP implementations
mentioned in llul86 (and almost certainly every other implementation) use
ports to send and receive messages. As we shall see in the next section, we
cannot dismiss this difference so easily.

I mentioned that there have been several implementations of CSP. Instead
of discussing all implementations, I will choose the one I am most familiar
with, namely occam. It is probably fair to say that occan is the most robust
implementation, any feature we see in other implementations we will also see in
occam. My information comes from the programming manual (Lim84].

In CSP, a program was essentially a parallel command, which contained
the individual processes. Occarm does allow one to create named processes, but
since communication is port oriented, rather than process oriented, one need not
name the processes explicitly. There is a parallel comnand' in occam, like CSP,
but process scope is determined by indentation instead of name. For example,
the occam command

PAR
VAR yl:
yl := I
VAR y2:
y2:= 0

creates 2 processes, one sets variable yl to I, the other sets y2 to 0. Note that
yl and y2 are local variables, and cannot be accessed by the other process-as
in CSP. Note that although the following occam command appears legal, it tries
to share a common variable y between two processes, which is not allowed.

VAR y:
PAR

y :=I
y :=0

A major difference between occan and ('SP is that occam isn't strongly typed,
or even weakly typed. Types of variables are determined by the compiler, and
not declared by the programmer. Clearly then, one can't have typed signals,
although occan has a generic signal called ANY.

Occam has all 6 commands specified in (SP', although input and output
commands specify ports (called channels in occan) instead of processes. Alter-

'Actually, what we call commands in CSP are called processes in occam. For the sake of
clarity, I will call them commands.

'Actually 7, as sequencing must be explicitly specified in occasn with the SEQ command.

5

native commands are done with the ALT command. Repetitive commands are
trickier: one must enclose an ALT command in a WHILE command. WHILE
is a deterministic conditional looping commmand (as in conventional program-
ruing languages). There is also a deterministic branching command, the IF
command. Subscripting as used in the original paper is fully supported via
replicators, which allow one to subscript processes, channels, and commands.

It would seem that occam has not only met the CSP description (save for
structured variables, which we've already dismissed), it has gone beyond it, as
we can use both deterministic and nondeterministic commands, interleaved in
any imanner we like. We also have greater flexibility in communicating through
the use of user-defined channels. So why would we concern ourselves with trying
to implement a less powerful language? We'll see why in the next section.

4 Does CSP Do What We Think It Does?

When Dijkstra originally devised structured programming, there were several
doubts raised. But perhaps the biggest doubt raised was whether one could do
everything under structured programming that one could do previously. After
all, he was reducing the set of programs one could write by a sizeable amount.
Maybe some programs wouldn't map into the reduced set. Fortunately, Bohm
and Jacopini were able to prove that any program we could write previously
could be written under structured programming with no loss of functionality
13J661.

Hoare's paper on ('SP has the samie effect regarding multiprocess programs:
he reduced the set of possible concurrent programs to ones using guarded comn-
imands and a message-oriented process-to-process protocol, with no buffering.
How do we know that every program we would ever want to write could be done
using ('CSP?

Tha,'s a good question. But there's an even better one: how do I know
that this CSP program I wrote will do what I think it will? You see, there
are problems that can (,(cvr ini mmltiproe'5s programs that have no correlate
ims single-streuam programs like deadl.,,k and stUtrvtti,l. lhes, ar, J)roletIus
that cannot be abstracted away by a program canonization, because there are
programs that we want to write that have the possibility of deadlocking or
starving one of their members. Resource allocation programs for an operating
system are but one example. So theoretical analysis of ('SP has concentrated
on this aspect.

For instance, Levin and G;ies wrote a paper in 1981 which gave a pzof tech-
nique for CSP programs, although they altered the definition slightly 1L0811.
The proof is based on Hoare's axiomatic method for single-streani programs
[Hoa69), but extended with a proof that the program is free from deadlock. Apt,
Frances, and de Roever did a similar proof [AFdR80]. Each program must be
proven individually, and as with Hoare's Axioms, it is not yet feasible to devise

an automatic theorem prover. But it is even worse for multiprocess programs,
for the reasons given above. If a process is added to a program we've already
proven correct, we may have to start the proof all over: since the addition of a
new process can create deadlocks where none existed before.

Hoare himself later added substantially to the theory of CSP by publishing a
book IHo%85i. At this point, Hoare had the same benefit of hindsight that we do.
Every piece of research I have mentioned took place before he wrote the book.
He made two major changes to his theory. One was the change from process-
oriented to port-oriented communication we discussed earlier, although his ports
are unidirectional one-input-one-output channels. The other change was from an
assumption of process termination to indefinite execution in parallel commands.

At the time, he wanted to be able to use postconditions to prove correctness
of the code, as is done with Hoare's Axioms in conventional programs. Later,

he was able to find a more satisfactory way of proving correctness, thus he
abandoned this rule.

The book is not a proof of CSP, it is an axiomatic system based on the origi-
nal BNF grammar. Some things were changed, for instance guarded commands
were now represented by a choice operator and tie guard was eliminated. The

guard, of course, is necessary in the actual program to allow the programmer to
determine when a certain action will happen. But if we're only trying to prove
the correctness of guarded commands, we can assume a generic guard with-

out loss of generality. A lot has been added: for instance, notations for traces
of a program or process, for various types of interactions between processes,
and for general nondeterminism. But now, instead of being a set of executable
statements that produce a desired result, a CSP program is a set of sequen-

tial streams of abstract events. And it is not entirely clear how one converts a
CSP program to a set of sequences of abstract events. This is a problem with
axiomatic systems in general: making sure that the universe the system works

under maps to the universe of interest.

5 Conclusion

CSP, when originally designed, was to serve two purposes -one practical and one
prophetic. The practical idea was to create an efficient paradigm for working on

multiprocess programs. Hoare's approach had two main focal points: guarded
commands and nuessage-based interprocess communication. Both of these have
been incorporated in several languages, including one that is used for practical
programming (namely occam). Btt in a practical sense, we can't really say that
CSP is a standard. The language Mesa, for instance, is based on monifors, which
have shared memory. Theoretically, however, CSP is a standard. Research on

multiprocess systems, particularly distributed multiprocess systems, often use
CSP as a model. For instance, Jalote and Campbell used CSP to research
fault-tolerance in interactive multiprocess programs [JC86]. This is perhaps

7

to be expected, as CSP was the first proof system to incorporate distributed
processes s .

Which brings us to the prophetic part. In 1978, when Hoare originally
devised CSP, there were no distributed programs. One could of course send
messages between machines using some sort of mail facility, but each machine
ran a separate mailing program. It hadn't occurred to the general computing
populac,, to partition a program and run it on separate computers- after all,
intracoraputer links were faster and more reliable than intercomputer links,
and memory could be shared between the processes. But since then, we have
found uses for distributed programming. For instance, when one works with an
interactive editor on a personal workstation attached by network to a central
computer, the workstation will do much of the editing operations itself, and send
updates or commands it can't perform to the central computer. While Hoare
foresaw the possible uses of distributed processing, he could not have predicted
the amount of research that would be (lone over the next 10 years. CSP has
shown itself to be a powerful, flexible, and tractable paradigm; and we are likely
to see it used for many years to come.

6 Acknowledgments

The author would like to thank C A R Hoare for reading a preliminary version of
the paper and making several useful comments, many of which were incorporated
in this paper. The author would also like to thank ToIm Nartkcr, who suggested
the topic and provided materials used in the course of research. Finally, the
author owes a great deal of thanks to the Army Research Office, who sponsored
the publication of this technical report.

1 Owieki and Gries developed a proof for multipro-ess programs in 1976, but they used a
centrallsed model.

I.

Si

References

[AFdR80] K Apt, N Francez, and W de Roever. A proof system for commu-
nicating sequential processes. ACM Transactions on Programming
Languages and Systems, 2(3):359-385, 1980.

[BJ66] C Bohm and G Jacopini. Flow diagrams, turing machines, and lan-
guages with only two formation rules. Communcatwns of the ACM,
9(5):366-371, 1966.

[Dij751 E W Dijkstra. Guarded comnmands, nondeterminacy, and formal
derivation of programs. Coinnunications of the ACM, 18(8):453-
457, 1975.

[Hoa691 C A R Hoare. An axiomatic basis of computer programming. Com-
munzcations of the ACM, 12(10):576-580, 1969.

[Hoa78] C A R Hoare. Communi-ating sequential processes. Communica-
tions of the ACM, 21(8):666-677, 1978.

(Hoa851 C A R Hoare. Communicating Sequential Processes. Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[Hu186) M E C Hull. Implementation of the ('SP notation for concurrent
systems. The Computer Journal, 29(6):500-505, 1986.

[JC86I P Jalote and R H Campbell. Atounic actions for fault-tolerance using
CSP. IEEE Thansactions on Software Engineering, SE-12(1):59-68,
1986.

ILG81] G M Levin and D Gries. A proof technique for communicating se-
quential processes. Acta Jnformatica, 15:281-302, 1981.

[Lim841 INMOS Limited. occam Programming Manual. Prentice-Hall, En-
glewood Cliffs, NJ, 1984.

IPS851 J L Peterson and A Silberschatz. Operating System Concepts, chap-
ter 10. Addison-Wesley, Reading, MA, 2 edition, 1985.

[Sil8l] A Silberschatz. Port directed communication. The Computer Jour-
nal, 24(1):78- 82, 1981.

9

